Research Article Mean Square Summability of Solution of Stochastic Difference Second-Kind Volterra Equation with Small Nonlinearity

نویسندگان

  • Beatrice Paternoster
  • Leonid Shaikhet
  • Roderick Melnik
چکیده

Difference equations with continuous time are popular enough with researches [1–8]. Volterra equations are undoubtedly also very important for both theory and applications [3, 8–12]. Sufficient conditions for mean square summability of solutions of linear stochastic difference second-kind Volterra equations were obtained by authors in [10] (for difference equations with discrete time) and [8] (for difference equations with continuous time). Here the conditions from [8, 10] are generalized for nonlinear stochastic difference second-kind Volterra equations with continuous time. All results are obtained by general method of Lyapunov functionals construction proposed by Kolmanovskiı̆ and Shaikhet [8, 13–21]. Let {Ω,F,P} be a probability space and let {Ft, t ≥ t0} be a nondecreasing family of sub-σ-algebras of F, that is, Ft1 ⊂ Ft2 for t1 < t2, let H be a space of Ft-adapted functions x with values x(t) in Rn for t ≥ t0 and the norm ‖x‖2 = supt≥t0 E|x(t)|2. Consider the stochastic difference second-kind Volterra equation with continuous time:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate solution of the stochastic Volterra integral equations via expansion method

In this paper, we present an efficient method for determining the solution of the stochastic second kind Volterra integral equations (SVIE) by using the Taylor expansion method. This method transforms the SVIE to a linear stochastic ordinary differential equation which needs specified boundary conditions. For determining boundary conditions, we use the integration technique. This technique give...

متن کامل

Solving Volterra Integral Equations of the Second Kind with Convolution ‎Kernel‎

In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad ‎et al., ‎‎[K. Maleknejad ‎and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, ‎Appl. Math. Comput.‎ (2005)]‎ to gain...

متن کامل

NUMERICAL SOLUTION OF LINEAR FREDHOLM AND VOLTERRA INTEGRAL EQUATION OF THE SECOND KIND BY USING LEGENDRE WAVELETS

In this paper, we use the continuous Legendre wavelets on the interval [0,1] constructed by Razzaghi M. and Yousefi S. [6] to solve the linear second kind integral equations. We use quadrature formula for the calculation of the products of any functions, which are required in the approximation for the integral equations. Then we reduced the integral equation to the solution of linear algebraic ...

متن کامل

NUMERICAL APPROACH TO SOLVE SINGULAR INTEGRAL EQUATIONS USING BPFS AND TAYLOR SERIES EXPANSION

In this paper, we give a numerical approach for approximating the solution of second kind Volterra integral equation with Logarithmic kernel using Block Pulse Functions (BPFs) and Taylor series expansion. Also, error analysis shows efficiency and applicability of the presented method. Finally, some numerical examples with exact solution are given.

متن کامل

SOLVING NONLINEAR TWO-DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS OF THE FIRST-KIND USING BIVARIATE SHIFTED LEGENDRE FUNCTIONS

In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007